Purification and properties of L-alanine dehydrogenase of the phototrophic bacterium Rhodobacter capsulatus E1F1.
نویسندگان
چکیده
In the phototrophic nonsulfur bacterium Rhodobacter capsulatus E1F1, L-alanine dehydrogenase aminating activity functions as an alternative route for ammonia assimilation when glutamine synthetase is inactivated. L-Alanine dehydrogenase deaminating activity participates in the supply of organic carbon to cells growing on L-alanine as the sole carbon source. L-Alanine dehydrogenase is induced in cells growing on pyruvate plus nitrate, pyruvate plus ammonia, or L-alanine under both light-anaerobic and dark-heterotrophic conditions. The enzyme has been purified to electrophoretic and immunological homogeneity by using affinity chromatography with Red-120 agarose. The native enzyme was an oligomeric protein of 246 kilodaltons (kDa) which consisted of six identical subunits of 42 kDa each, had a Stokes' radius of 5.8 nm, an s20.w of 10.1 S, a D20,w of 4.25 x 10(-11) m2 s-1, and a frictional quotient of 1.35. The aminating activity was absolutely specific for NADPH, whereas deaminating activity was strictly NAD dependent, with apparent Kms of 0.25 (NADPH), 0.15 (NAD+), 1.25 (L-alanine), 0.13 (pyruvate), and 16 (ammonium) mM. The enzyme was inhibited in vitro by pyruvate or L-alanine and had two sulfhydryl groups per subunit which were essential for both aminating and deaminating activities.
منابع مشابه
The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1.
The phototrophic bacterium Rhodobacter capsulatus E1F1 assimilates nitrate under anaerobic phototrophic growth conditions. A 17 kb DNA region encoding the nitrate assimilation (nas) system of this bacterium has been cloned and sequenced. This region includes the genes coding for a putative ABC (ATP-binding cassette)-type nitrate transporter (nasFED) and the structural genes for the enzymes nitr...
متن کاملHalotolerance of the Phototrophic Bacterium Rhodobacter capsulatus E1F1 Is Dependent on the Nitrogen Source.
Phototrophic growth of the moderate halotolerant Rhodobacter capsulatus strain E1F1 in media containing up to 0.3 M NaCl was dependent on the nitrogen source used. In these media, increased growth rates and growth levels were observed in the presence of reduced nitrogen sources such as ammonium and amino acids. When the medium contained an oxidized nitrogen source (dinitrogen or nitrate), incre...
متن کاملHigh-level transcription of large gene regions: a novel T(7) RNA-polymerase-based system for expression of functional hydrogenases in the phototrophic bacterium Rhodobacter capsulatus.
High-level synthesis of complex enzymes like bacterial [NiFe] hydrogenases, in general, requires an expression system that allows concerted expression of a large number of genes. So far, it has not been possible to overproduce a hydrogenase in a stable and active form by using a customary expression system. Therefore we started to establish a new, T(7)-based expression system in the phototrophi...
متن کاملBacteriocin from Purple Nonsulfur Phototrophic Bacteria, Rhodobacter capsulatus
To find whether productivity of bacteriocin is controlled between different species under unusual cultural conditions, we used Rhodobacter capsulatus ATCC 17016 as a producer and Rhodopseudomonas palustris ATCC 17003 as an indicator. Rhodobacter capsulatus was cultured under aerobic conditions in the dark in Lascelles medium containing 0.3% Triton X-100. As a result, bacteriocin productivity in...
متن کاملMalate dehydrogenase in phototrophic purple bacteria: purification, molecular weight, and quaternary structure.
The citric acid cycle enzyme malate dehydrogenase was purified to homogeneity from the nonsulfur purple bacteria Rhodobacter capsulatus, Rhodospirillum rubrum, Rhodomicrobium vannielii, and Rhodocyclus purpureus. Malate dehydrogenase was purified from each species by either a single- or a two-step protocol: triazine dye affinity chromatography was the key step in purification of malate dehydrog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 171 6 شماره
صفحات -
تاریخ انتشار 1989